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Abstract

The unique combination of great stiffness, strength, and extensibility makes
spider major ampullate (MA) silk desirable for various biomimetic and syn-
thetic applications. Intensive research on the genetics, biochemistry, and
biomechanics of this material has facilitated a thorough understanding of its
properties at various levels. Nevertheless, methods such as cloning, recom-
bination, and electrospinning have not successfully produced materials with
properties as impressive as those of spider silk. It is nevertheless becoming
clear that silk properties are a consequence of whole-organism interactions
with the environment in addition to genetic expression, gland biochemistry,
and spinning processes. Here we assimilate the research done and assess
the techniques used to determine distinct forms of spider silk chemical and
physical property variability. We suggest that more research should focus on
testing hypotheses that explain spider silk property variations in ecological
and evolutionary contexts.
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Spidroins: the fibrous
proteins from which
all spider silks are
made. The name is
abbreviated from
spider silk fibroins

Dope: silk proteins in
a liquid crystalline
form dissolved in
aqueous solution. The
dope feedstock for
spider major ampullate
silk synthesis contains
spidroins in aqueous
media

Mechanical
properties: suite of
properties, including
ultimate strength,
extensibility,
toughness, and
Young’s modulus,
pertaining to the
tensile performance of
the silk

INTRODUCTION

Silk is a proteinaceous fiber that is naturally produced by many invertebrates. The most well-known
silk producers include larvae of the domesticated silk moth, Bombyx mori, and other silk moths of
the families Bombycidae and Saturniidae. Other silk producers include web spinners (Embioptera),
trichopteran larvae, some Hymenoptera, and all spiders (Araneae) (29, 31). Of the spiders, the web
builders (superfamily Araneoidea, suborder Araneomorphae) have the most impressive silk toolkits
(9). Most silks, but especially spider silks (47, 48, 72), are exceptionally tough. The toughness of silk
is considered to be primarily a consequence of their amino acid sequence and spinning processes
(17, 27, 101), the mechanisms of which are described herein. The amino acid sequences of specific
silk proteins, or spidroins (see definition), are well described and appear to be conserved within
individual spiders and species. Differential spidroin expression, nonetheless, may occur in certain
circumstances in particular silks (18, 33, 54). Silk proteins flow through the gland as a concentrated
aqueous solution, or dope, before being drawn from a spinneret. The proteins aggregate and form
a fiber during the final stages of spinning. Many factors, including the rate of drawing and other
physiological factors, influence the chemical and physical properties of a given silk type (39, 80,
122, 135).

The immense toughness of spider silks and the fact that they are naturally synthesized in
water rather than caustic chemicals (30, 101) make the commercial production of synthetic spider
silks desirable (38, 142). Nevertheless, the commercial synthesis of materials with spider silk–like
properties has not been achieved (34, 136, 138). There are many reasons why silks produced using
recombinant technologies have not mimicked natural spider silks (73). One reason is that none
of the recombinant proteins used were based on full-length spidroin-encoding sequences (7, 8,
28, 60, 120). A more significant reason for the failure to produce synthetic silks with attributes
of natural spider silks is an incomplete understanding of how secretion and spinning induce the
cloned proteins and/or the spun threads to vary in properties across environments (27, 136).

There are now several good reviews detailing the natural and synthetic production of spider
silk (e.g., 31, 43, 82, 132, 137). However, an overview of the mechanisms by which spidroin
synthesis and spinning induce variation in spider silk across environments and the implications of
this process for producing synthetic silk is currently lacking.

Spider Silks: Types, Properties, and Uses

Spiders of the large and diverse superfamily Araneoidea produce seven distinct types of silks, each
of which is secreted by different silk glands (Figure 1). Major ampullate (MA) silk is used as a safety
line by most spiders and as web frame and radii by orb web spiders. It has the most impressive
mechanical properties of all spider silks, as it combines high strength with high extensibility.
Minor ampullate (MiA) silk is used as a temporary capture spiral by orb web builders and for prey
wrapping by cobweb builders (77, 107, 134). Flagelliform silk is used in the axial threads of the
capture spirals of orb webs (109). It has less than half the strength of MA silk, but it is about seven
times more extensible (125, 127). In orb webs, the flagelliform silk is coated with a viscous, gluey,
aggregate silk that facilitates the retention of captured prey (109, 134). Pyriform silk cements the
dragline and web frame to substrates and glues silk threads together during web construction (98,
102). Aciniform silk is similar in strength to MA silk and is considerably stiffer (9). It is used to
wrap prey, form the outer lining of egg sacs, and decorate some orb webs (9, 130, 144). Finally,
tubuliform (or cylindriform) silk forms the outer coating of the egg sacs (49, 65, 66). Of these
silks, the vast majority of published information focuses on property variations in MA silk (44, 82,
123, 132), so we focus on this silk here unless otherwise stated.
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Flagelliform

Viscous
aggregate

Tubuliform

AciniformMinor
ampullate

Minor
ampullate

Pyriform

Major
ampullate
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ampullate

Figure 1
The glands of origin, proposed ecological function, and mechanical properties of the seven different types of spider silk: major
ampullate silk (red ), minor ampullate silk (slate), flagelliform silk ( pink), viscous aggregate silk ( green), pyriform silk ( purple), aciniform
silk ( yellow), and tubuliform silk (blue).
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Protein secondary
structures: regions
within proteins
organized into regular
structures; includes 310
helices, α-helices,
spirals, β-spirals,
β-turns, and β-sheets
in silk proteins

MA silk is made up of a lipid-rich layer and a glycoprotein-rich skin covering a fibrous outer
and inner core (61, 122, 123). The core is composed of two types of proteins, or spidroins, called
MaSp1 (derived from major ampullate spidroin 1) and MaSp2 (major ampullate spidroin 2) (122).
These proteins contain ordered crystalline and disordered noncrystalline regions (the latter is
often called the amorphous region, although it is not technically amorphous). The crystalline
regions contain stacked pleated β-sheets, whereas the amorphous region arranges as a matrix of
310 helices, β-turns or β-spirals, and other protein secondary structures depending on the amino
acid composition (68, 69, 76, 122) (Figure 2).

MaSp1 and MaSp2 are encoded by two or more homologous genes (59, 62, 141). These genes
have been sequenced for the cobweb-building western black widow spider (Latrodectus hesperus)
and some orb web–building spiders, such as Nephila clavipes (7, 62, 141). The gene sequences for

≈ 5 μm

≈ 100 nm

≈ 10 nm

a

b

c

d

Figure 2
The hierarchical structure of spider silk. (a) A single thread is depicted, composed of (b) skin-covered fibrils,
which are (c) conglomerates of proteins (spidroins) that are arranged as (d ) crystalline β-sheets separated by
protein chains of variable structure representing the so-called amorphous region. The scale arrows indicate
the approximate sizes of the structures.
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Mechanical stiffness:
the extent to which a
material resists
deformation, indicated
by Young’s (elastic)
modulus

the MA silk of these species are thus used as models from which MaSp1 and MaSp2 expression is
estimated from amino acid composition in other spiders.

Because a MaSp2-like gene sequence has been identified only in orb web spiders, MaSp2 is
thought to have arisen from an ancestral version of MaSp1 in this group of spiders (8). Both MaSp1
and MaSp2 contain a region of highly repetitive amino acid sequences (50, 127) and nonrepetitive
but conserved C- and N-terminal domains (44, 121, 139). These terminal domains are important
for the formation of protein secondary structures (49, 57, 124).

VARIABILITY IN SILK PROPERTIES

Chemical Properties

Techniques such as cloning and peptide mapping (43, 54), high performance liquid chromatog-
raphy (18, 55), nuclear magnetic resonance (NMR) (6, 35, 119), differential scanning calorimetry
(52, 133), fluorimetry, Raman and polarized Fourier transform infrared spectroscopy (81, 117),
circular dichroism (23, 60), and wide- and small-angle X-ray scattering (14, 19, 104, 106) have
identified that amino acid sequences (which are interpreted to indicate the ratio of spidroins
expressed), protein secondary structure (e.g., proportional composition of β-sheets, 310 helices,
β-turns, or β-spirals), and crystalline orientation, alignment, and density can vary extensively
between and within spider species. These variations may induce subsequent variations in silk
mechanical properties.

Mechanical Properties

The tensile properties of MA silk fibers are the properties of greatest interest, as understanding
them enables the generation of materials that serve a particular function. They are usually deter-
mined by mounting the fibers onto cardboard, plastic, or aluminum foil frames; placing the frames
within the grips of a tensile testing machine; cutting away the sides of the frame; and stretching
the silk until rupture to calculate the engineering stress (σ ):

σ = F
A0

,

where F is the force applied to the specimen and A0 is the cross-sectional area of the thread
calculated from diameter assuming constant thread volume (55), and strain (ε)

ε = loge
L
L0

,

where L is the instantaneous length of the fiber at a given extension value and L0 is the original
gauge length of the fiber (10).

Alternatively, researchers may calculate true stress as

σ = F
Ai

,

where Ai is the instantaneous cross-sectional area of the fiber at any given strain value (55, 85).
From plots of stress versus strain, ultimate strength (the stress at rupture); extensibility (strain

at rupture); toughness or work of extension (the area under the stress strain curve); and Young’s
modulus, or mechanical stiffness (the slope of the curve during the initial elastic phase) are calcu-
lated (Figure 3). These properties are of interest to many researchers because their values can be
normalized to different sample dimensions, thus facilitating property comparisons between and
within spider species (11, 16, 125). Wide variations in mechanical properties among species have
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Figure 3
Components of the stress-strain curve, showing how ultimate strength (the stress at rupture); extensibility
(strain at rupture); toughness (the total work of extension, calculated as the area under the stress strain
curve); and Young’s modulus, or stiffness (the slope of the curve during the initial elastic phase for each
specimen), are determined.

Supercontraction:
silk with high elasticity
and low stiffness
induced by exposure to
water or high
humidity. In the
supercontracted state
of spider silk, the
amorphous region
proteins are
misaligned. The state
is considered a ground
state

Phylogenetic
variation: variation in
the chemical or
mechanical properties
of a specific silk found
among different spider
species

been reported in the literature. For instance, N. senegalensis MA silk declines by half in strength and
doubles in elasticity when relative humidity is raised from 25% to 80% (131). Different research
groups, nevertheless, favor different measures of stress over others, and some measure the mechan-
ics of silk after supercontraction in water whereas others measure dry silks. Such methodological
inconsistencies lead to confusion when comparing properties between studies.

TYPES OF PROPERTY VARIATION

Phylogenetic Variation

We refer to phylogenetic variation in silk properties as variation in the chemical or physical
properties of one type (e.g., MA silk) of silk across different species (11, 17, 35, 125). It may not
be surprising that there is considerable phylogenetic variation in silk properties given that silk use
has evolved in spiders over approximately 400 million years (31).

The design principle of ordered crystalline regions interspersed among disordered noncrys-
talline regions is consistent across most spider groups (123). However, the MA silk of spiders in
the Araneoidea has greater elasticity, and hence toughness, than that of spiders from other groups
(114, 125). Silk elasticity thus seems to have coevolved with web-building behavior and may have
been facilitated by the evolution of MaSp2 (11, 35, 114). The highly extensible MaSp2 spidroin
accordingly may have been essential for the origin of the two-dimensional orb web (11, 18). Strong
silk seems to have predated web building (11), however, so silk strength was likely imparted early
in the evolution of web-building spiders and elasticity imparted later (11, 35). The innovation
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Biological plasticity:
differing of chemical
or mechanical
properties of a type of
silk within a single
species as a direct
result of the
environment to which
the spider is exposed.
Contrast with
engineering plasticity

Engineering
plasticity: ability of a
material to be
repeatedly deformed
without rupture

of using extensible flagelliform and viscous aggregate silks in capture spirals instead of dry, stiff
cribellate silk may have further facilitated a reduction in the production costs of orb webs (91, 92).

The uncertainty about the phylogenetic history of some spider groups makes it difficult to make
generalizations about silk property evolution. For instance, the cribellate web-building spider
clade Deinopoidea were moved in 2014 to become sister to the non-web-building retrolateral-
tibial apophysis (RTA) clade (20), suggesting that the use of flagelliform and aggregate silks
were not initially used to reduce the cost of producing orb webs. Molecular evidence suggests
that two-dimensional orb webs were repeatedly and significantly modified through evolutionary
time (12, 20, 64). How changes in silk properties have driven web evolutionary trajectories is
nevertheless unresolved, but evidence suggests that there were significant benefits associated with
investing in silks with different levels of biological plasticity (see term definitions for distinction
from engineering plasticity) (11).

Biological Plasticity

The distal mechanisms inducing MA silk biological plasticity have been described across a range
of contexts. Ecologically, climatic factors (19, 44, 83) and diet (13–15, 18, 128) may induce silk
plasticity via one or several processes, including (a) differential MaSp1 or MaSp2 expression, (b)
glandular processes, and (c) forces acting during spinning, drawing, and postspinning inducing
variations in protein structure or amino acid alignment.

PROCESSES INDUCING BIOLOGICAL PLASTICITY

Differential Spidroin Secretion

The amount of MaSp1 compared to MaSp2 secreted is thought to affect the mechanical proper-
ties of the silk fibers. MaSp1 consists of multiple (GA)n, (GGX)n, and (A)n repeated amino acid
sequences (where G = glycine, A = alanine, and X = other amino acids) (121, 142), and these se-
quences promote the formation of crystalline β-sheets in the spun fibers (26, 129). MaSp2 consists
of (GPGXX)n repeated sequences (where P = proline) in addition to the (GA)n, (GGX)n, and (A)n

sequences (62, 67, 143). NMR analyses have shown that the proline-containing (GPGXX)n motif
in MaSp2 promotes the formation of β-spirals and type-II β-turns (35, 67–69). The crystalline
β-sheets of MaSp1 give the silk strength. By contrast, the β-spirals and β-turns promoted by
MaSp2 give the silk extensibility (86, 110, 121). Genetic, spectroscopic, and mechanical analyses
show that the high extensibility of flagelliform silk is likewise due to the presence of an extended
(GPGGX)n motif (79, 80).

The MA gland consists of a tail, sac, duct, and spigot, and the gland opens at the spigot via a
valve (132). There is a pH gradient (from approximately pH 8 at the tail to approximately pH 5 at
the spigot) along the length of the gland, which is critical for the formation of protein structure (3)
(Figure 4). MaSp1 and MaSp2 are secreted in various amounts, depending on species and amino
acid availability, by the epithelial cells in the tail (3, 4, 134, 137) and stored as highly concentrated
(approximately 20–50% protein) dope in the posterior region of the sac (134). The pH of the
sac is maintained at the isoelectric point for MaSp1 and MaSp2 (i.e., approximately 6.8–7.0) by a
proton pump and the actions of carbonic anhydrase (3). Na+, K+, and Cl− ions secreted by the
sac epithelial tissue prevent spidroin aggregation within the sac (60, 80). The different chemical
composition of the two spidroins means they will aggregate and fold differentially during spinning.
The ratio of MaSp1 to MaSp2 in silk thus influences the chemical and physical properties of the
spun silk fibers (18, 33, 53).
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pH
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d
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8 7 6 5

Figure 4
The major ampullate silk gland. Showing the location of the (a) tail, (b) sac, (c) entrance to duct, or ampulla,
(d ) duct, and (e) spigot. The pH gradient range from approximately pH 8 at the tail to approximately pH 5 at
the spigot is indicated.

Influence of Diet

Spiders on different diets or consuming prey differing in nutritional value may produce silks
differing in the amount of MaSp1 and MaSp2 expressed, which may be measurable as variation
in amino acid composition (13, 14, 18, 33, 128). Spiders on a low-protein diet produce MA silk
with lower proline and serine, as a consequence of MaSp2 downregulation, than spiders on high-
protein diets (14, 18, 53). One hypothesis is that MaSp2 is synthesized at a higher metabolic cost
than MaSp1 because it contains the chemically complex amino acids proline and serine (32, 53).
This hypothesis predicts that the greater metabolic cost of expressing MaSp2 compared to MaSp1
forces some spiders to vary the ratio of the spidroins expressed when their protein or energy intake
is low (18, 32, 53). Nevertheless, when measuring metabolic cost in terms of the ATP consumed
to synthesize one mole of amino acid from one mole of glucose, serine and proline production are
comparable to glycine and alanine and low compared to methionine and leucine (70). Moreover,
variation in MaSp1 and MaSp2 expression alone does not always account for the diet-induced
variations in silk chemical and mechanical properties (14). More research is accordingly required
to discover the precise mechanisms involved.

Postsecretion Processes

We identify postsecretion processes as those inducing protein phase transitions as the dope flows
through the duct. During these processes, the proteins arrange into different secondary structures
(60, 61, 134) under the influence of changes in water content, salt concentration, pH, and shear
stress (37, 39, 58, 78).

The sac of the MA gland is separated from the duct by the funnel-shaped ampulla (36, 82, 132)
(Figure 4c), which varies in size and position as the spider ages (36). The lumen width decreases
sharply at the ampulla so the dope flows faster and is drawn under shear stress to induce shear
thinning (22). The length of the duct affects the amount of shear thinning; the longer the duct,
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Mechanical
compliance: the
material property of
having low stiffness

the greater the thinning (22, 36, 80). These forces may partly explain why adult spiders (who have
longer spinning ducts than juvenile spiders have) spin tougher silks than juvenile spiders do (115).

In the duct, a reduction in salt concentration, in particular phosphate salts, results in phosphor-
ylation of the dope and buildup of phosphoric acid, reducing luminal pH from ∼6.8 to ∼6.0. This
process destabilizes the N-terminal domains inducing protein dimerization (50, 58, 76, 112) and
facilitating aggregation and assembly (60, 75, 132, 145). The C-terminal domain acts as a switch
controlling the rate of assembly (57, 124). The dope is now a crystalline liquid amyloid (24, 26,
71, 134). Shear stress and a further reduction in pH induce the proteins to fold and form β-sheets
and other secondary structures (3, 74, 134) at a rate depending on temperature (71, 135). The
series of reactions within the duct thus appear to function to get the dope into a gel-like state to
enable shear forces to act on it.

Silk secondary protein structure often varies with environmental parameters, such as wind
speed, without variation in spidroin expression (19). Such factors should affect silk properties by
altering water availability, pH, salt concentration, or other physiological parameters in the duct
(132). Changes in the rates of MaSp1 and MaSp2 aggregation and folding in different conditions
may also be a source of biological plasticity (122).

Spinning Processes

We identify spinning processes as those that induce the crystalline and amorphous protein chains
to self-align (22, 80, 134) and become stiffer and less elastic (81, 87, 99). In the final stages of
spinning, the dope becomes increasingly gel-like and eventually pulls away from the wall of the
duct, a phenomenon called draw-down taper (74, 84). Under draw-down taper, the proteins self-
align and the silk dehydrates and solidifies (36).

Models (e.g., 22, 24) predict that different frictional forces at the valve cause the crystalline
and amorphous chains to align differently. Spiders thus can change the frictional force at the valve
to alter the alignment of the silk proteins and tune the performance of the silk (40, 52). The silk
spun by spiders in free fall are thicker and have greater mechanical compliance compared to that
of spiders crawling on a horizontal surface, and these differences may be a consequence of the
different frictional forces applied under different pulling speeds (45, 46, 88). Spiders walking on a
horizontal surface draw silk at slower speeds than do spiders falling rapidly using their weight, and
this variation in draw speed influences the frictional force applied at the valve (88). Comparisons
of silks that have been forcibly fast pulled and slow pulled have found structural differences in
alignment in the crystalline and amorphous regions, with fast-pulled silks showing the greater
alignment (24, 27, 63, 108).

Anesthetization of spiders using CO2 or N2 during forcible silking may prevent the spiders from
applying the so-called friction brake, but the anesthesia itself can cause variation in silk properties
(96, 105). Silks obtained from anesthetized spiders are thinner and stiffer with a higher storage
modulus and greater density of skin relative to core than silks obtained from unanaesthetized
spiders (90, 93). The precise mechanisms by which anesthesia induces property variations are,
nevertheless, largely unknown.

Postspin Variation

The media into which the silk is drawn influences the molecular structure and mechanical proper-
ties of spider silk (27, 84, 118). For instance, MA silks spun in air are stiffer and stronger than those
spun in water under similar tension (84). All spiders, with the exception of the aquatic spinning
spiders Argyroneta aquatica, naturally spin their silk in air most of the time. Exposure to dry air
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dehydrates the silk fibers, enabling hydrogen bonds between the protein chains to reform, and the
fiber to stiffen (118).

Studies (116–118) comparing the properties of MA silks spun in air, water, urea, and ethanol
have found that silks spun in ethanol and urea have similar properties to those spun in water. This
is because spinning silk into polar solvents such as water, urea, or ethanol disrupts hydrogen bonds
between protein chains in the amorphous region, resulting in highly elastic and compliant silk
(116).

Supercontraction

MA silk spun in water, or immersed in water or high humidity (>∼70% relative humidity) post-
spinning, shows an increase in elasticity and decrease in stiffness up to 200% (2, 41, 140). An
increase in strength, with an increase in breaking energy and stiffness, and a decrease in break-
ing strain are characteristics of silks spun underwater (27, 84). These reversible changes in silk
mechanical properties induced by water are called supercontraction (87, 111, 140).

Supercontraction occurs in MA silk because water molecules disrupt hydrogen bonds between
crystalline blocks, mobilizing the proteins and causing changes in their alignment (2, 51, 116).
The amorphous region consequently becomes mobile and realigns and reorientates (4, 98). The
amount of shrinking experienced as a percentage of original length depends primarily on the amino
acid composition, as certain amino acids, in particular proline, influence the molecular bonding
and subsequently protein secondary structures (87, 103).

Because supercontraction in MA silk removes the influence of amorphous region alignment
on its mechanical properties, the supercontracted state may be considered a ground state of MA
silk. Supercontraction can thus be utilized to return MA silks from different spider species to a
state that is independent of any previous loading (21, 40, 42). It is therefore useful for comparing
phylogenetic variation in silk properties (11, 89). The supercontracted state may also be utilized
to determine the amount and mechanisms of biological plasticity in MA silk (11, 17, 40, 42).
For instance, it has been used in conjunction with X-ray diffraction analyses to assess the relative
influence of crystalline and amorphous region alignment on diet-induced biological plasticity (17).

Minor ampullate silk shows amorphous region realignment, but it has no measurable super-
contraction on exposure to water (25, 56). The interactions between water and silk proteins in the
different types of silk are, accordingly, more complex than current models describe, with much
detail remaining to be determined.

Aging

The positioning of the protein chains is completed in MA silk upon drawing of the fiber. Nev-
ertheless, silk fibers left in dry environments and silk within spider webs or cocoons exposed to
direct sunlight experience further short-term increases (1, 16, 100) or long-term decreases (95) in
strength and elasticity. These changes are brought about as a consequence of molecular vibrations
displacing the hydrogen bonds between proteins in the amorphous region (16, 72). The molecu-
lar vibration rate is variable and depends on ambient temperature, humidity, and the intensity of
UV and other forms of radiation (94, 97, 100). Cracks in the skin induced by UV radiation are
responsible for further postdraw changes in the mechanical properties of MA silk, but the critical
sizes of the cracks have proven difficult to quantify (97).

IMPLICATIONS FOR SYNTHETIC PRODUCTION

The production of synthetic silks or spidroins generally involves incorporating cloned spidroin-
encoding genes into a bacterial (e.g., Escherichia coli ), yeast, plant (e.g., tobacco), or animal (e.g.,
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goat) host (28, 73, 126), and the secreted proteins are assembled and spun into fibers using acid
bath coagulation in a caustic environment before drawing through microfluidic or electrospinning
devices (73, 113, 120, 138). Two studies (5, 30) nonetheless describe silk development using water
as the spinning medium. The current understanding of the physiology and biochemistry of the
natural spinning process is nevertheless lacking in detail. We contend here that a better under-
standing of the biochemical and physiological spinning mechanisms inducing property variability
across environments will improve the quality of silks produced by recombinant technologies and
artificial spinning. Future advancements in recombinant technology and refinements in artificial
spinning techniques will in turn facilitate a better understanding of the mechanisms inducing
biological plasticity as it will become possible to vary spinning processes while holding spidroin
expression constant. Advances in modeling and analytical technologies, such as the development of
greater computing power, more sensitive tensile testing machines, and new laser and synchrotron
sources, will unquestionably provide for more precise silk structure and property measurements
that will accompany the new spinning techniques.

CONCLUSIONS

Previous studies of spider silk have focused on the ultimate structure of spider MA silk, uti-
lizing an array of advanced techniques, and have elucidated silk production in detail. There is
nevertheless much that remains to be learned before the creation of synthetic silk analogs can
be realized. Here we reviewed the research on silk chemical and mechanical property variabil-
ity and documented how secretion, postsecretion, spinning, and postspinning mechanisms can
facilitate silk property variation among and between spider species. We suggest that a more de-
tailed understanding of these mechanisms in ecological and evolutionary contexts is critical for
improving our understanding of how spiders synthesize fibers that combine extreme strength with
elasticity.

SUMMARY POINTS

1. Web-building spiders produce up to seven different types of silk, each of which is secreted
from different glands, has different functions, and has different chemical and physical
properties.

2. A combination of high strength and extensibility makes spider major ampullate silk highly
desirable for many commercial applications. Generally, silk products are produced using
recombinant and various spinning technologies, but these methods have not been able
to produce fibers with properties similar to natural spider silk.

3. Although amino acid sequences alone can influence the secondary structures and the
consequent mechanics of spider MA silk, postsecretion physiological and biochemical
mechanisms acting within the duct of the gland will induce further variations in the
secondary structures of the proteins secreted into the tail.

4. Silks spun into air have different mechanical properties to silks spun into water or other
polar solvents. Supercontraction is the term used to describe the properties induced upon
exposure to water. In the supercontracted state, internal mobility of the proteins and a
disruption of hydrogen bonds cause proteins within the amorphous region to misalign.
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5. Silk biological plasticity is the variation in the silk of an individual spider across differ-
ent environments. Biological plasticity may occur as a consequence of variations in the
secretion, postsecretion, spinning, and postspinning environment. Studies attempting to
understand the mechanisms inducing silk plasticity should examine all of the mitigating
factors. Silk supercontraction may be utilized in such experiments as it provides a means
for returning silk to its ground state.

FUTURE ISSUES

1. It is imperative to understand the natural processes that cause spider silk properties to
vary among species (phylogenetic variability) and within species (silk plasticity).

2. Major ampullate silk properties in the supercontracted state may be considered a ground
state because the influence of previous loading and amorphous region alignment is re-
moved. Returning silk to a ground state may be useful for experiments examining the
mechanism of silk biological plasticity.

3. We identified the processes that influence spider silk mechanical properties that act
during secretion, postsecretion, spinning, and postspinning. A more thorough under-
standing of the influence of each process on silk mechanical properties is essential if the
development of synthetic silk is to be realized.
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55. Guinea GV, Pérez-Rigueiro J, Plaza GR, Elices M. 2006. Volume constancy during stretching of spider
silk. Biomacromolecules 7:2173–77

56. Guinea GV, Elices M, Plaza GR, Perea GB, Daza R, et al. 2012. Minor ampullate silks from Nephila and
Argiope spiders: tensile properties and microstructural characterization. Biomacromolecules 13:2087–98

57. Describes how the
C-terminal domain
controls the formation
of protein secondary
structures.

57. Hagn F, Eisoldt L, Hardy JG, Vanderly C, Coles M, et al. 2010. A conserved spider silk domain
acts as a molecular switch that controls fibre assembly. Nature 465:239–42

456 Blamires · Blackledge · Tso

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
7.

62
:4

43
-4

60
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

26
05

:a
00

0:
12

34
:4

f0
:a

c7
b:

7e
5d

:c
b4

4:
ee

 o
n 

03
/2

6/
20

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



EN62CH24-Blamires ARI 22 December 2016 12:5

58. Hagn F, Thamm C, Scheibel T, Kessler H. 2011. pH-dependent dimerization and salt-dependent sta-
bilization of the N-terminal domain of spider dragline silk—implications for fiber formation. Angnew.
Chem. Int. Ed. 50:310–13

59. Han L, Zhang L, Zhao T, Wang Y, Nakagaki M. 2013. Analysis of a new type of major ampullate spider
silk gene, MaSp1s. Int. J. Biol. Macromol. 56:156–61

60. Hedhammer M, Rising A, Grip S, Saenz Martinez A, Nordling K, et al. 2008. Structural properties of
recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis:
implications for fiber formation. Biochemistry 47:3407–17

61. Heim M, Romer L, Scheibel T. 2010. Hierarchical structures made of proteins. The complex architecture
of spider webs and their constituent silk proteins. Chem. Soc. Rev. 39:156–64

62. Describes the first
cDNA library and
sequencing of the
MaSp2 spidroin.

62. Hinman MB, Lewis RV. 1992. Isolation of a clone encoding a second dragline silk fibroin: Nephila
clavipes dragline silk is a two-protein fiber. J. Biol. Chem. 267:19320–24

63. Holland C, O’Neil K, Vollrath F, Dicko C. 2012. Direct structural and optical regimes in natural silk
spinning. Biopolymers 97:368–73

64. Hormiga G, Griswald CE. 2014. Systematics, phylogeny, and evolution of orb-weaving spiders. Annu.
Rev. Entomol. 59:487–512

65. Hu X, Kohler K, Falick AM, Moore AMF, Jones PR, et al. 2005. Egg case protein 1. A new class of silk
proteins with fibroin-like properties from the spider Latrodectus hesperus. J. Biol. Chem. 280:21220–30

66. Huang W, Lin Z, Sin YM, Li D, Gong Z, Yang D. 2006. Characterization and expression of a cDNA
encoding a tubuliform silk protein of the golden web spider Nephila antipodiana. Biochimie 88:849–58

67. Izdebski T, Akhenblit P, Jenkins JE, Yarger JL, Holland GP. 2010. Structure and dynamics of aromatic
residues in spider silk: 2D carbon correlation NMR of dragline fibers. Biomacromolecules 11:168–74

68. Jenkins JE, Creager MS, Butler EB, Lewis RV, Yarger JL, Holland GP. 2010. Solid-state NMR evidence
for elastin-like β-turn structure in spider dragline silk. Chem. Comm. 46:6714–16

69. Jenkins JE, Creager MS, Holland GP, Lewis RV, Yarger JL. 2010. Quantitative correlation between the
protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11:192–200

70. Kaleta C, Schäuble S, Rinas U, Schuster S. 2013. Metabolic costs of amino acid and protein production
in Escherichia coli. Biotechnol J. 8:1105–14

71. Kenny JM, Knight DP, Wise MJ, Vollrath F. 2002. Amyloidogenic nature of spider silk. Eur. J. Biochem.
269:4159–63

72. Keten S, Xu Z, Ihle M, Buehler MJ. 2010. Nanoconfinement controls stiffness, strength and mechanical
toughness of β-sheet crystals in silk. Nat. Mater. 9:359–67

73. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. 2008. Spider silks and their applications. Trends
Biotechnol. 26:244–51

74. Knight DP, Vollrath F. 1999. Liquid crystals and flow elongation in a spider’s silk production line. Proc.
R. Soc. B 266:519–23

75. Knight DP, Vollrath F. 2001. Changes in element composition along the spinning duct in a Nephila
spider. Naturwissenschaften 88:179–82

76. Kronqvist N, Otikovs M, Chmyrov V, Chen G, Andersson M, et al. 2014. Sequential pH-driven dimer-
ization and stabilization of the N-terminal domain enables rapid spider silk formation. Nat. Comm.
5:3254

77. La Mattina C, Reza R, Hu X, Falick AM, Vasanthavada K, et al. 2008. Spider minor ampullate silk
proteins are constituents of the prey wrapping silk of the cob weaver Latrodectus hesperus. Biochemistry
47:4692–700
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