** undergrad and grad

* coauthors

  1. Piorkowski D. & Blackledge T.A. 2017. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk. The Science of Nature 104:67.
  2. Hsiung B., Justyn N.M., Blackledge T.A. & Shawkey M.D. 2017. Spiders have rich pigmentary and structural colour palettes. Journal of Experimental Biology 220:1975-1983.
  3. Blamires S.J., Blackledge T.A. & Tso I. 2017. Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production. Annual Review of Entomology 62:443-60.
  4. Amarpuri G., Zhang C., Blackledge T.A. & Dhinojwala A. 2017. Adhesion modulation using glue droplet spreading in spider capture silk. Royal Society Interface 14:20170228.
  5. Jain D., Blackledge T.A., Miyoshi T. & Dhinojwala A. 2016. Unraveling the Design Principles of Black Widow's Gumfoot Glue. Biological Adhesives 978-3-319-46082-6.
  6. Madurga R., Plaza G.R., Blackledge T.A., Guinea G.V., Elices M. & Perez-Rigueiro J. 2016. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter. Scientific Reports 6:18991.
  7. Blamires S.J., Liao C., Chang C., Chuang Y., Wu C., Blackledge T.A., Sheu H. & Tso I. 2015. Mechanical Performance of Spider Silk Is Robust to Nutrient-Mediated Changes in Protein Composition. Biomacromolocules 15:1218-1225.
  8. Hsiung B., Blackledge T.A. & Shawkey M.D. 2015. Spiders do have melanin after all. Journal of Experimental Biology 218: 3632-3635
  9. Hsiung B., Deheyn D.D., Shawkey M.D. & Blackledge T.A. 2015. Blue Reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity. Science Advances 1:e1500709
  10. Jain D., Zhang C., Cool L.R., Blackledge T.A., Westdemiotis C., Miyoshi T. & D.hinoJwala A. 2015. Composition and Function of Spider Glues Maintained During the Evolution of Cobwebs. BioMacromolocules 15: 3373-3380.
  11. Madurga R., Blackledge T.A., Perea B., Plaza G.R., Riekel C., Burghammer M., Elices M., Guinea G. & Perez-Rigueiro J. 2015. Persistence and variation in microstructural design during the evolution of Spider Silk. Scientific Reports. 5:14820.
  12. Amarpuri G., Zhang C., Diaz C., Opell B.D., Blackledge T.A. & Dhinojwala A. 2015. Spiders Tune Glue Viscosity to Maximize Adhesion. American Chemical Society 9.11:11472-11478
  13. Amarpuri G*, Chaurasai V**, Jain D*, Blackledge TA & Dhinojwala A. 2015. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion. Scientific Reports. 5: 9030.
  14.  Astrop T.I.*, Sahni V.*, Blackledge T.A. & Stark A.Y.* 2015. Mechanical properties of the chitin-calcium-phosphate "clam shrimp" carapace (Branchiopoda: Spinicaudata): Implications for taphonomy and fossilization. Journal of Crustacean Biology 35:123-131.
  15. Hsiung B.K.*, Blackledge T.A. & Shawkey M.D. 2014. Structural color and its interaction with other color-producing elements: perspectives from spiders. Proceedings of SPIE, DOI: 10.1117/12.2060831
  16. Sahni V.*, Miyoshi T., Chen K.**, Jain D.*, Blamires S.J., Blackledge T.A. & Dhinojwala A. 2014. Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs. Biomacromolecules 15:1225-1232.
  17. Blamires S.J., Sahni V.*, Dhinojwala A., Blackledge T.A. & Tso I.M. 2014. Nutrient deprivation induces property variations in spider gluey silk. PLoS One. 9: e88487
  18.  Marhabaie M.**, Leeper T.C. & Blackledge T.A. 2014. Protein composition correlates with the mechanical properties of spider (Argiope trifasciata) dragline silk. Biomacromolecules 15: 20-29.
  19. Sahni V.*, Dhinojwala A., Opell B.D. & Blackledge T.A. 2013. Prey capture adhesives produced by orb-weaving spiders. In: T. Asakura and T. Miller (eds.) Biotechnology of Silk. Biologically-Inspired Systems 5, DOI 10.1007/978-94-007-7119-2 11.
  20. Boutry C.* & Blackledge T.A. 2013. Wet webs work better: humidity, supercontraction and the performance of spider orb webs. Journal of Experimental Biology. 213. 3606-3610.
  21. Sensenig A., Kelly S.P.**, Lorentz K.A.**, Lesher B.** & Blackledge T.A. 2013. Mechanical performance of spider orb webs is tuned for high-speed prey. Journal of Experimental Biology. 216: 3388-3394.
  22. Ballarin F.M., Blackledge T.A., Capitos-Davis N.L., Frontini P.M., Abraham G.A. & Wong S-C. 2013. Effect of topology on the adhesive forces between electrospun polymer fibers using a T-peel test. Polymer Engineering and Science. DOI: 10.1002/pen.23474
  23. Agnarsson I., Kuntner M. & Blackledge T.A. Darwin’s bark spider. 2012. McGraw-Hill Encyclopedia of Science and Technology. V. 11. New York, McGraw-Hill, pp. 52-54.
  24. Shi Q., Wong S-C., Wan K-T., Blackledge T.A. & Najem, J.* 2012. Dry adhesion based on electrospun polymer nanofibers.  Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2010. 12:163-167.
  25. Blackledge, T.A. 2013. Spider silk: molecular structure and function in webs. In: Nentwig, W. Spider Ecophysiology, Springer. Pp. 267-281.
  26. Blackledge, T.A., M. Kuntner, M. Marhabaie*, T.C. Leeper, Agnarsson, I. 2012. Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs. Scientific Reports (Nature publishing) 2:833.
  27. Blackledge, T.A., J. Pérez-Rigueiro, G.R. Plaza, B. Perea, A. Navarro, G.V. Guinea, Elices, M. 2012. Sequential origin in the high performance properties of orb spider dragline silk. Scientific Reports (Nature publishing). 2:782.
  28. Agnarsson I., Gregoric M.*, Blackledge T.A., Kuntner M. 2012. The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like webs. Journal of Zoological Systematics and Evolutionary Research. 51:100-106.
  29. Sahni V.*, Harris J.**, Blackledge T.A., Dhinojwala A. 2012. Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nature Communications 3: 1106.
  30. Blamires S. J., Wu C. L.*, Blackledge T. A. and Tso I. M. 2012. Post-secretion processing influences spider silk performance. Journal of the Royal Society Interface. 9: 2479-2487.
  31. Sensenig A., Lorentz K.A**, Kelly S.P.** & Blackledge T.A. 2012. Spider orb webs rely on radial threads to absorb prey energy. Journal of the Royal Society Interface. 9:1880-1891.
  32. Blamires S.J., Wu C.L., Blackledge T.A. & Tso I.M. 2012. Environmentally-induced post-spin property changes in spider silks: influences of web types, spidroin composition, and ecology. Biological Journal of the Linnean Society. 106:580-588.
  33. Blackledge T.A. 2012. Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs. Journal of Arachnology. 40:1-12.
  34. Pekár S., Blackledge T.A., Coddington, J. 2012. Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution. 66: 776-806.
  35. Blackledge T.A., Kuntner M., Agnarsson I. 2011. The form and function of spider orb webs: evolution from silk to ecosystems. Advances in Insect Physiology. 41: 175-262.
  36. Blackledge T.A. 2011. Prey capture in orb weaving spiders: Are we using the best metric? Journal of Arachnology. 39: 205-210.
  37. Gregorič M.*, Agnarsson I., Blackledge T.A. & Kuntner. M. 2011. How did the spider cross the river? Behavioral adaptations for river-bridging webs in Caerostris darwini (Araneae: Araneidae). PLoS One. 6:e26847.
  38. Gregorič M.*, Agnarsson I., Blackledge T.A., Kuntner M. 2011. Darwin’s bark spider: biology of giant orb webs (Araneidae: Caerostris darwini). Journal of Arachnology. 39: 294-302.
  39. Boutry C.*, Řezáč M. & Blackledge T.A. 2011. Plasticity in major ampullate silk production in relation to spider phylogeny and ecology. PLoS One. 6(7):e22467.
  40. Sahni V.*, Blackledge T.A. & Dhinojwala A. 2011. Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Scientific Reports (Nature publishing). 1:41.
  41. Kelly S.P.**, Sensenig A., Lorentz K.A.** & Blackledge T.A. 2011. Damping capacity is evolutionarily conserved in the radial silk of orb-weaving spiders. Zoology. 114: 233-238.
  42. Sensenig A., Agnarsson I. & Blackledge T.A. 2011. Adult spiders use tougher silk: ontogenetic changes in web architecture and silk biomechanics in the orb-weaver spider. Journal of Zoology. 285: 28-38.
  43. Sahni V.*, Blackledge T.A. & Dhinojwala A. 2011. A review on spider silk adhesion. Journal of Adhesion. 87: 595-614.
  44. Harmer A.M.T., Blackledge T.A., Madin J.S. & Herberstein M.E. 2011. High-performance spider webs: integrating biomechanics, ecology and behaviour. Journal of the Royal Society Interface. 8:457-471.
  45. Boutry C.* & Blackledge T.A., 2010. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers. Journal of Experimental Biology. 213:3505-3514.
  46. Agnarsson I., Kuntner M. & Blackledge T.A. 2010. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS One. 5(9): e11234. doi:10.1371/journal.pone.0011234 (coverage includes BBC News, National Geographic, Science and Time magazine)
  47. Sensenig A., Agnarsson I., Gondek T.** & Blackledge, T.A. 2010. Webs in vitro and in vivo: Spiders alter their orb web spinning behavior in the laboratory. Journal of Arachnology. 38:183-191.
  48. Shi Q, Wan K.T., Wong S.C., Chen P., Blackledge T.A., 2010. Do electrospun polymer fibers stick? Langmuir. 26(17), 14188–14193
  49. Sensenig A., Agnarsson I., & Blackledge T.A., 2010. Behavioural and biomaterial coevolution in spider orb webs. Journal of Evolutionary Biology 23:1807-2029. (cover article)
  50. Sahni V, Blackledge T.A. & Dhinojwala A. 2010. Viscoelastic solids explain spider web stickiness. Nature Communications 1:19 DOI: 10.1038/ncomms1019. (featured in WKSU-FM, WKYC-TV)
  51. Framenau V.W., Dupérré N., Blackledge T.A. & Vink C.J. 2010. Systematics of the new Asutralasian orb-weaving spider genus Backobourkia (Aranea: Araneidae: Araneinae). Arthropod Systematics and Phylogeny. 68:79-111.
  52. Agnarsson I., Kuntner M., Coddington J. & T. A. Blackledge. 2010. Shifting continents, not behaviors: independent colonization of solitary and subsocial Anelosimus spider lineages on Madagascar (Araneae, Theridiidae). Zoologica Scripta. 39(1): 75-87.
  53. Boutry C.,* & Blackledge T.A. 2009. Biomechanical variation of silk links spinning plasticity to spider web function. Zoology. 112: 451-460.
  54. Blackledge T.A, Coddington J. & I. Agnarsson. Fecundity increase supports adaptive radiation hypothesis in spider web evolution. Communicative & Integrative Biology. 2(6):1-5. (cover)
  55. Blackledge, T.A., Boutry, C.,* Wong, S.C., Baji, A.,* Dhinojwala, A., Sahni, V. & Agnarsson, I. 2009. How super is supercontraction? Persistent versus cyclic response to humidity in spider dragline silk. Journal of Experimental Biology. 212:1981-1989. (cover article featured in Inside JEB, New Scientist,WKYC-TV)
  56. Agnarsson, I., Dhinojwala, A., Sahni, V.*, & Blackledge, T.A.. 2009. Spider silk as a novel high performance muscle driven by humidity. Journal of Experimental Biology. 212:1990-1994. (cover article featured in Inside JEB, WKYC-TV, WOSU,  New Scientist, Popular Mechanics)
  57. Agnarsson, I., C. Boutry*, S-C Wong, A. Baji*, A. Sensenig and T.A. Blackledge. 2009. Supercontraction forces in spider dragline silk depend on rate of humidity change. Zoology. 112: 325-331. (cover)
  58. Agnarsson, I. and T.A. Blackledge. 2009. Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb weaving spiders.  Journal of Zoology. 278: 134-140.Featured in Cosmos Magazine)
  59. Blackledge, T.A., N. Scharff, J. Coddington, T. Szüts, J.W. Wenzel, C.Y. Hayashi and I. Agnarsson. 2009. Spider web evolution and diversification in the molecular era. Proceedings of the National Academy of Sciences. 106:5229-5234.
  60. Boutry, C.* and T.A. Blackledge. 2008. The common house spider alters the material and mechanical properties of cobweb silk in response to different prey. Journal of Experimental Zoology. 309A: 542-555.  (see highlight in National Geographic and Outside JEB)
  61. Agnarsson, I., Boutry, C.* and T.A. Blackledge. 2008. Spider silk aging: Initial improvement in a high performance material followed by slow degradation. Journal of Experimental Zoology. 309A, 494-504. (cover article)
  62. Zevenbergen, J.M.*, Schneider, N.K.**, and T.A. Blackledge. 2008. Fine dining or fortress? Functional shifts in spider web architecture by the western black widow Latrodectus hesperus. Animal Behaviour. 76:823-829. (see New Scientist article)
  63. Baji A.,* Wong S.C, Blackledge T.A., Siwei L. 2008. Mechanical Properties of electrospun composites and their crystallinity measurements using x-ray diffraction. Society of Plastics Engineers Annual Technical Conference 2008
  64. Baji A.,* Wong S.C., Blackledge T.A., Reneker D., Tripatanasuwan S. 2008. Mechanical behavior and toughness of electrospun polymer nanofibers. Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2007, Vol 13 – Processing and Engineering Applications of Novel Materials. 13:57-62
  65. Swanson, B.O., T.A. Blackledge and C.Y. Hayashi. 2007. Spider capture silk: performance implications of variation in an exceptional biomaterial. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 307A: 654-666.
  66. Blackledge, T.A. and C.M. Eliason*. 2007. Functionally independent components of prey capture are architecturally constrained in spider orb webs. Biology Letters. 3: 456-458.
  67. Blackledge, T.A. and J.M. Zevenbergen**. 2007. Condition-dependent web architecture in the western black widow spider, Latrodectus hesperus. Animal Behaviour. 73: 855-864.
  68. Tso, I.M., S.Y. Jiang* & T.A. Blackledge. 2007. Does the giant wood spider Nephila pilipes respond to prey variation by altering web or silk properties? Ethology. 113: 324-333.
  69. Swanson, B.O., T.A. Blackledge, A.P. Summers & C.Y. Hayashi. 2006. Spider dragline silk: Correlated and mosaic evolution in high performance biological materials. Evolution. 60: 2539-2551.
  70. Blackledge, T.A. and  J.M. Zevenbergen*. 2006. Mesh width influences prey retention in spider orb webs. Ethology. 112: 1194-1201.
  71. Blackledge, T.A. & C.Y. Hayashi. 2006a. Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders. Journal of Experimental Biology. 209(16): 3131-3140. (see Inside JEB highlight)
  72. Blackledge, T.A. & C.Y. Hayashi. 2006b. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata. Journal of Experimental Biology. 209(13): 2452-2461. (cover article) see write ups in Natural History Magazine and Science News
  73. Swanson, B.O., T.A. Blackledge, J. Beltrán** & C.Y. Hayashi. 2006. Variation in the material properties of spider dragline silk across species. Applied Physics A: Materials Science & Processing. 82: 213-218.
  74. Blackledge, T.A., J.E. Swindeman & C.Y. Hayashi. 2005a. Quasistatic and continuous dynamic analysis of the mechanical properties of silk from the cobweb of the western black widow Latrodectus hesperus. Journal of Experimental Biology. 208: 1937-1949.
  75. Blackledge, T.A., A.P. Summers & C.Y. Hayashi. 2005b. Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology. 108: 41-46. See write up at Discovery News
  76. Blackledge, T.A., R.A. Cardullo & C.Y. Hayashi. 2005c. Polarized light microscopy, variability in spider silk diameters, and the mechanical characterization of spider silk. Invertebrate Biology. 124: 165-173.
  77. Blackledge, T.A. & R.G. Gillespie. 2004. Convergent evolution of web building behaviors in an adaptive radiation of Hawaiian spiders.  Proceedings of the National Academy of Sciences. 101:16228-16233.
  78. Hayashi, C.Y., T.A. Blackledge & R.V. Lewis. 2004. Molecular and mechanical characterization of spider aciniform silk: Uniformity of Iterated Sequence Modules in a Novel Member of the Spider Silk Fibroin Gene Family. Molecular Biology and Evolution. 21:1950-1959.
  79. Blackledge, T.A., G. J. Binford, and R. G. Gillespie. 2003. Community structure in an adaptive radiation of Hawaiian spiders. Annales Zoologici Fennici. 40:293-303.
  80. Blackledge, T.A., J. A. Coddington, and R. G. Gillespie. 2003. The evolution of three-dimensional spider webs as predator defenses. Ecology Letters.6:13-18. (cover article) see write up at National Geographic News
  81. Suarez A.V., Benard M., Blackledge T.A., et. al. 2002. Conflicts around a study of Mexican crops. Nature. 417:897. (editorial correspondence, no peer review)
  82. Blackledge, T.A. & R.G. Gillespie. 2002. Estimation of capture areas of spider webs in relation to web asymmetry. Journal of Arachnology. 30:70-77.
  83. Blackledge, T.A. & J.W. Wenzel. 2001. Prey capture as a determinate of tangle web architecture in Dictyna volucripes. Ethology Ecology & Evolution. 13:105-113.
  84. Blackledge, T.A. & J.W. Wenzel. 2001. Silk mediated defense by an orb web spider against predatory mud‑dauber wasps. Behaviour. 138:155-171.
  85. Blackledge T.A. 2000. Stabilimenta in spider webs: predator‑prey conflict and sensory drive. Dissertation. The Ohio State University. 144pp.
  86. Blackledge, T.A. & K.M. Pickett. 2000. Predatory interactions between mud-dauber wasps (Hymenoptera, Sphecidae) and Argiope (Araneae, Araneidae) in captivity. Journal of Aranchnology 28:211-216.
  87. Blackledge, T.A. & J.W. Wenzel. 2000. The evolution of cryptic spider silk: a behavioral test. Behavioral Ecology 11:142-145.
  88. Blackledge, T.A. & J.W. Wenzel. 1999. Do stabilimenta in orb webs attract prey or defend spiders. Behavioral Ecology 10:372-376. (cover article)
  89. Blackledge, T.A. 1998. Signal conflict in spider webs driven by predators and prey. Proceedings of the Royal Society of London, Biological Sciences 265:1991-1996.
  90. Blackledge, T.A. 1998. Stabilimentum variation and foraging success in Argiope aurantia and Argiope trifasciata (Araneae, Araneidae). Journal of Zoology 246:21-27.
  91. Vari, R.P. & T.A. Blackledge. 1996. New curimatid, Cyphocharax laticlavius (Ostariophysi, Characiformes), from Amazonian Ecuador, with a major range extension for C. gouldingiCopeia 1996(1):109-113